THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 10 Problems
 8th April 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. Consider the ring of Gaussian integer $(\mathbb{Z}[i],+, \times)$. Define the norm function $|\cdot|: \mathbb{Z}[i] \rightarrow$ $\mathbb{Z}_{\geq 0}$ by $|a+b i|=a^{2}+b^{2}$. Let $z, w \in \mathbb{Z}[i]$ so that $w \neq 0$, and $|z| \geq|w|$.
(a) Show that there exists some $k, r \in \mathbb{Z}[i]$ so that $z=k w+r$, with $|r|<|w|$.
(b) Hence, prove that $(\mathbb{Z}[i],+, \times)$ is a PID, i.e. every ideal $I \subset \mathbb{Z}[i]$ is generated by one single element. (Hint: Follow what we did for \mathbb{Z} and $F[x]$.)
2. Is $\mathbb{Z}[x]$ a PID?
3. Prove that $\mathbb{Z}[i] /(1+i) \cong \mathbb{Z} / 2 \mathbb{Z}$.
4. Prove that $\mathbb{Z}[i] /(2) \cong \mathbb{Z}_{2}[x] /\left(x^{2}\right)$.
5. (a) Determine how many elements are there in the quotient rings $\mathbb{Z}[i] /(3)$ and $\mathbb{Z}[i] /(5)$.
(b) Show that $\mathbb{Z}[i] /(3)$ is a field but $\mathbb{Z}[i] /(5)$ is not.
(c) Show that $\mathbb{Z}[i] /(p) \cong \mathbb{Z}[x] /\left(p, x^{2}+1\right) \cong \mathbb{Z}_{p}[x] /\left(x^{2}+1\right)$.
6. Determine whether the following polynomials are irreducible in $\mathbb{Z}_{5}[x]$:
(i) $f(x)=x^{3}+2 x+1$, (ii) $g(x)=2 x^{3}+x^{2}+2 x+2$.
7. Let $f(x)=x^{4}+k x^{2}+1 \in \mathbb{Z}[x]$.
(a) Suppose that $f(x)$ is reducible, prove that $f(x)=\left(x^{2}+a x+b\right)\left(x^{2}-a x+b\right)$, where $a \in \mathbb{Z}$ and $b= \pm 1$.
(b) Show that if $f(x)$ is reducible, then $k=2-a^{2}$ or $k=-2-a^{2}$. Hence, deduce that if $k>1$, then $f(x)$ is irreducible.
(c) Show that $f(x)=x^{4}-22 x+1$ is irreducible in $\mathbb{Z}[x]$.
(d) Show that $f(x)=x^{4}-23 x+1$ is reducible in $\mathbb{Z}[x]$ by finding a factorization in $\mathbb{Z}[x]$.
